Write your name here

Surname		Other names		
In the style of:	Centre Number		Candid	date Number

Mathematics A

Bounds
Higher Tier

Past Paper Style Questions Arranged by Topic
 Paper Reference
 1MAO/2H

You must have: Ruler graduated in centimetres and
Total Marks millimetres, protractor, pair of compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.

Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided - there may be more space than you need.
- Calculators may be used.

Information

- The total mark for this paper is 100
- The marks for each question are shown in brackets - use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

1. $w=\sqrt{\frac{x}{y}}$
$x=5.43$ correct to 2 decimal places.
$y=4.514$ correct to 3 decimal places.
By considering bounds, work out the value of w to a suitable degree of accuracy.
You must show all your working and give a reason for your final answer.
$w=$ \qquad
2. An arrow is shot vertically upwards at a speed of V metres per second.

The height, H metres, to which it rises is given by

$$
H=\frac{V^{2}}{2 g}
$$

where $g \mathrm{~m} / \mathrm{s}^{2}$ is the acceleration due to gravity. $V=24.4$ correct to 3 significant figures.
$g=9.8$ correct to 2 significant figures.
(i) Write down the upper bound of g.
(ii) Calculate the lower bound of H.

Give your answer correct to 3 significant figures.

3．A building plot is in the shape of a rectangle．
The width of the field is 26 metres，measured to the nearest metre．（a）
Work out the upper bound of the width of the field．
metres

The length of the field is 135 metres，measured to the nearest 5 metres．
（b）Work out the upper bound for the perimeter of the field．
metres
4. Sophie drove for 238 miles, correct to the nearest mile.

She used 26.3 litres of petrol, to the nearest tenth of a litre.

$$
\text { Petrol consumption }=\frac{\text { Number of miles travelled }}{\text { Number of litres of petrol used }}
$$

Work out the upper bound for the petrol consumption for Sophie's journey. Give your answer correct to 2 decimal places.
miles per litre
(Total 3 marks)

Lots more free papers at www.bland.in
5. (a) A solid cube has sides of length 5 cm .

Work out the total surface area of the cube. State the units of your answer.
(b) Change $125 \mathrm{~cm}^{3}$ into mm^{3}.
\qquad mm^{3}
(2)

The weight of the cube is 77 grams, correct to the nearest gram.
(c) (i) What is the minimum the weight could be?
\qquad grams
(ii) What is the maximum the weight could be?
6. The length of a line is 53 centimetres, correct to the nearest centimetre.
(a) Write down the least possible length of the line.
\qquad centimetres
(b) Write down the greatest possible length of the line.

7 . The voltage V of an electronic circuit is given by the formula

$$
V=I R
$$

where I is the current in amps and R is the resistance in ohms.

Given that $\quad V=208$ correct to 3 significant figures, $R=12.8$ correct to 3 significant figures,
calculate the lower bound of I.
8. The average fuel consumption (c) of Tara's car, in kilometres per litre, is given by the formula

$$
c=\frac{d}{f}
$$

where d is the distance travelled, in kilometres, and f is the fuel used, in litres.
$d=153$ correct to 3 significant figures.
$f=43.3$ correct to 3 significant figures.
By considering bounds, work out the value of c to a suitable degree of accuracy.
You must show all of your working and give a reason for your final answer.
$c=$ \qquad
(Total 5 marks)

BLANK PAGE

